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Abstract—More than 6 million Americans are at risk for
Alzheimer’s Disease Related Dementias (ADRD), most of
whom are 65 or older. The clock drawing test (CDT) is a
quick, simple, and effective technique that has the potential
advantage of self-management and screening for ADRD
patients. Current CDT-based ADRD screening studies focus
more on efficacy, involving many handcrafted features,
ignoring data modalities, and lacking validation. This paper
aims to propose a unified telemedicine framework for
fully and semi-automatic effective early ADRD screening
based on multimodal and agile data fusion, focusing on
the interpretability and validation of the model by using
gradient-weighted class activation mapping (Grad-CAM)
and locally linear embedding (LLE). The datasets for this
work include 1,662 samples of CDT images and related de-
mographic and cognitive information. The fully automatic
case involving only CDT images can achieve the highest
AUC of 81% with a 75% recall rate in binary screening.
The multimodal data fusion in the semi-automatic case
can achieve up to 90% AUC with an 83% recall rate. The
visualization of the Convolutional Neural Networks (CNNs)
shows that it can automatically obtain critical information
about the outline, scale, and clock hands from CDT images,
and the analysis of structured features shows that the
memory test is key to effective ADRD screening.

Index Terms—Clock drawing test, gradient-weighted
class activation mapping, locally linear embedding, multi-
modal data fusion.

I. INTRODUCTION

AGE-RELATED cognitive decline and neurodegenerative
disorders, such as Alzheimer’s disease and related de-

mentias (ADRD), pose significant challenges to the health and
well-being of older adults. As individuals age, the risk of
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developing ADRD increases substantially, with the majority
of cases occurring in people older than 65. There are more
than 55 million people living with dementia worldwide, and
nearly 10 million new cases appear each year [1]. It has a
profound impact on individuals, their families, and society as a
whole [1], [2].

The rising prevalence of ADRD among the aging population
has prompted significant research efforts to better understand
the underlying causes and explore early interventions for pre-
vention [3]. The Clock Drawing Test (CDT) then becomes
one of the most attractive measures of cognitive function. It
has the advantages of being low cost, easy to understand,
requiring no special medical hardware, and the capacity for
remote operation, which is very friendly to people in rural
areas and middle-income countries. In addition, it can minimize
the intervention of professionals through automated machine
learning methods, which has the advantages of real-time and
resource-saving. Compared with other screening tools, such as
the Mini-Mental State Examination (MMSE), it not only com-
pensates for the time-consuming and complex shortcomings, but
it is also relatively unaffected by language, cultural, and ethnic
influences [4].

However, it is crucial to acknowledge the existing deficien-
cies in current CDT-based studies. The first notable concern
is the predominant focus on effectiveness and accuracy [5],
[6], [7], leading to the inclusion of handcrafted features and
extensive manual intervention. These practices carry the risk
of introducing excessive external bias and compromising the
fairness of the screening process. Secondly, certain CDT studies
exhibit a limited focus solely on the CDT tool itself, lack-
ing the necessary flexibility to incorporate diverse inputs [8],
[9]. These studies fail to consider the practical application
scenarios where additional data, such as demographic infor-
mation, play a significant role. Thirdly, studies that incorpo-
rate heterogeneous inputs tend to concentrate primarily on
the relationship between the CDT tools and ADRD. Unfor-
tunately, they often overlook the potential of multimodal and
agile data fusion techniques [10], halting their analysis at
a statistical level without further verification and validation
steps [4], [11].

Our work proposes a unified telemedicine framework for
ADRD screening. The framework encompasses fully automatic
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scoring and screening based on CDT images, as well as semi-
automatic cases involving heterogeneous inputs and multimodal
data fusion. In the fully automated scenario, participants can op-
erate autonomously without human intervention or handcrafted
features. The semi-automatic case allows for customization
by including additional information, such as demographic and
cognitive data. This flexibility facilitates the integration of hand-
crafted features into the system. The framework is adaptable for
quantitative scoring or qualitative binary diagnosis of ADRD,
making it highly applicable. We prioritize the interpretability and
validity verification of the model to enhance comprehensibility
and credibility, addressing key concerns in mHealth application
design and user satisfaction. The current scope of our study
focuses on establishing benchmarks, especially utilizing CDT
images for automatic scoring and screening for ADRD with
attention to interpretability and validation. This paper, as a
prospective study, will be of great help to the actual imple-
mentation of the application. The contributions of our work are
three-fold:

� A unified telemedicine framework for the screening of
ADRD, which is powered by machine learning algorithms,
enabling automatic scoring and screening based on CDT
images, thereby eliminating the need for manual interven-
tion.

� The framework can also apply for heterogeneous inputs
and enable focus on multimodal and agile data fusion in
semi-automatic cases.

� Exploring the effectiveness and reliability of advanced
visualization method and manifold learning.

The remainder of this paper is organized as follows. Section II
gives a brief background of CDT and an overview of existing
work on CDT-based ADRD studies. Section III introduces the
basic principles of the proposed framework and describes the
datasets and procedures used in this work, and Section IV
provides comprehensive and concrete analysis and results.
Section V offers a final discussion and insights. We conclude
our work in Section VI.

II. RELATED WORKS

CDT has emerged as a prominent focus in research on early
screening of ADRD, owing to its effectiveness. Various methods
have been explored to validate its efficacy, including statistical
analysis and rating scales [12], [13], as well as machine learning
techniques for processing CDT images [8], [14]. However, these
approaches often employ intricate scoring systems, rely on
numerous handcrafted features, and involve extensive manual
interventions, leading to potential bias during model training
and posing challenges for flexible applications.

Some studies have combined CDT images with other informa-
tion for further analysis. Seigerschmidt et al. [11] claimed that
age, gender, and level of education need to be considered with
CDT scores together for dementia screening. Additional studies
have also demonstrated that motor ability decreases significantly
with age, which affects CDT scores [5], [15]. In a highly
educated population, clock drawing is influenced by educational
level [4]. These studies provide insights for combining multiple

sources of information, indicating it would be more conducive
to ADRD screening. However, they usually focus too much on
the validation of the results or prediction performance, ignoring
the interpretation of these multi-modal data fusion processes and
the procedural analysis of this information.

Relevant studies have shown that machine learning can be
effectively and widely used in the auxiliary diagnosis and screen-
ing of ADRD [8], [10], [16]. However, few CDT-based studies
have comprehensive considerations, such as not only consider-
ing the effectiveness of ADRD screening but also focusing on the
combination of CDT images and other valuable information, as
well as explaining and validating the model to help users better
understand.

Our research aims to remedy the mentioned deficiencies with
a unified framework that maximizes the applicability of the
proposed framework by discovering key features during model
analysis for effective ADRD screening without any manual
intervention.

III. PROPOSED FRAMEWORK AND METHODS

In this study, we proposed a unified and comprehensive
telemedicine framework for early screening of ADRD. The
framework encompasses two main scenarios: fully automatic
ADRD screening using only CDT images and semi-automatic
screening involving multimodal data fusion. The framework
consists of six modules, each serving a specific purpose as
depicted in Fig. 1.

The initial approach presented in this study offers a stan-
dardized procedure for both quantitative score measurement
and qualitative binary screening. It emphasizes the effectiveness
and application of CDT itself, striving to minimize human
intervention and achieve rapid screening through artificial in-
telligence. Advanced visualization [17] and manifold learning
algorithms [18] are employed to enhance interpretability and
explore the model’s validity and reliability. The second semi-
automatic approach focuses on the multi-modal data fusion
procedure [19], [20], encompassing all three fusion stages, to
take advantage of additional information, such as the word recall
test and demographic data. Furthermore, it explores the use of
predicted quantitative scores as inputs for the final qualitative
binary diagnosis, aiming to achieve a more automated prediction
process.

The framework aligns rigorously with the established princi-
ples of mobile application development [21], facilitating users
in executing CDT tests with pen-and-paper convenience. Sub-
sequent to this initial step, users can seamlessly capture CDT
images using their mobile devices and subsequently transmit
the acquired data for processing. The results of prediction or
analysis are efficiently relayed back to the mobile device. No-
tably, the application operates predominantly in a local capacity,
requiring the network connection solely during data transmis-
sion. This operational design significantly mitigates concerns
associated with model size, speed, file management, and thread
performance [22]. Furthermore, the framework operates without
real-time constraints, with data transfer efficiency not being
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Fig. 1. A unified telemedicine framework for early screening of ADRD. This framework consists of six modules: user data collection, data pre-
processing, feature extraction, prediction model, estimation result, and result analysis. The prediction model encompasses two main scenarios: fully
automatic ADRD screening using only CDT images with CNN, MLP, and SVM models, and semi-automatic screening involving multimodal data
fusion with three fusion stages of early, joint, and late fusion.

the primary focus. The fully automatic mode yields an av-
erage raw data size of 373.81 KB per event in telemedicine
screening, whereas the semi-automatic mode records an aver-
age size of 373.90 KB per event, encompassing both image
and structured data. Presently, the prevailing Wi-Fi standard in
most households, 802.11ac, supports data rates ranging from
several hundred Mbps to Gbps [23]. Comparatively, 4G LTE
in cellular networks typically delivers speeds between several
tens to hundreds of Mbps, while 5G networks can potentially
attain multi-Gbps speeds contingent upon implementation and
frequency band utilization [24]. For instance, at a typical data
rate of 100 Mbps, data transmission takes approximately 0.0299
seconds per event in both fully automatic and semi-automatic
modes. The framework’s versatility caters comprehensively to
diverse user categories, offering valuable insights to both general
and clinical users in the telemedicine domain.

A. Dataset

The data used in this work includes CDT images and struc-
tured data, which consists of demographic and cognitive infor-
mation. All these datasets come from the National Health and
Aging Trends Study (NHATS) [25], which has been collecting
information on a national sample of Medicare beneficiaries aged
65 and older annually since 2011. NHATS was chosen for this

study due to its nationally representative data with great richness
in data content and high diversity, inclusivity and data quality.
Its enrollment plan ensures the findings are generalizable to the
entire elderly population covered by Medicare, and its sampling
method is stratified to ensure adequate representation across
various demographic segments, including age, sex, race, and
geographic location [26]. The study uses rigorous data collection
methods, including in-person interviews and performance tests,
to ensure the accuracy and reliability of the data. NHATS is
sponsored by the National Institute on Aging (grant number NIA
U01AG32947) and is conducted by Johns Hopkins University. It
oversamples African Americans and older adults by design [27].

The feature space of this study, shown in Table I, is constructed
based on NHATS survey data and corresponding CDT images.
The predictive features include demographic and cognitive in-
formation from the survey.

Demographic information includes age, weight, height and
gender of the subject and cognitive information contains scores
of memory test and CDT. The variable ‘intvrage’ indicates the
interval of the subject’s age level. This is a categorical variable
whose value is from 1 to 6 to indicate the subject’s age level
varies from 65 to 90+, and every 5 years indicates a class. For
example, value 1 means this subject’s age is in the interval of
65 to 69. We didn’t include sensitive data in this study, such
as the exact age of the subjects, due to the consideration of
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TABLE I
FEATURE SPACE

mitigating the risk of information leakage and de-identification
of the subjects.

Cognitive information includes memory tests and CDT. The
memory tests are immediate and delayed 10 item word recall
tests. A list of 10 nouns is read to subjects and they were asked
to recall as many words as possible, in any order [26]. The
immediate word recall test focuses on short-term or working
memory, the subjects were asked to recall the words immediately
after the presentation of the 10 words [28]. However, the delayed
word recall test evaluates long-term memory or the ability to
store and retrieve information over longer periods [28]. The
subjects were asked to recall the words after the clock drawing
test or other cognitive tests [26]. There are two measurements
corresponding to CDT scores, one is the score of CDT (clkdraw),
the other one is image clarity (clkimgcl). The score of CDT
ranges from 0 to 5, 0 means the image cannot be recognized as a
clock, 5 means the image is an accurate depiction of a clock. The
score of image clarity ranges from 1 to 4, 1 means the image is
very clear, 4 means the image is very unclear. These scores are
assessed by trained lay coders and clinical coders. The specific
scoring guideline, coder training, and selection process can be
found in the NHATS user manual [26].

TABLE II
STATISTICS OF (PART OF) DEMOGRAPHIC INFORMATION

TABLE III
STATISTICS OF CDT SCORES

The qualitative target variable for binary ADRD screening
comes from the NHATS health condition section, participants
will be asked whether they have been informed by a doctor that
they have ADRD since the last interview [26]. If they answered
yes, it means that they have been clearly diagnosed with de-
mentia or AD in the past year. The participants who answered
yes would be regarded as positive samples in this work, and
those who answered no would be negative samples. However,
it is worth pointing out that the participants who answered no
do not absolutely mean that they are not at risk for dementia or
ADRD. It may be that they have not had this examination in the
past year, or they may have possible dementia, but it was not
detected.

NHATS has conducted 12 rounds of surveys, with 10 rounds
completed at the time of this study. From the 6–10 rounds of data,
a set of 1662 samples were randomly selected as ground truth,
comprising 277 positive samples and 1385 negative samples.
As Tables II and III showed, among all the samples, there were
727 men and 935 women, most of them were white. Because the
subjects of NHATS are 65 age or older, there are 89.17% positive
samples over 75 years old, and 83.97% of negative samples are
between 70–89 years old. In addition, approximately 97% of
negative samples get CDT scores greater than or equal to 2, and
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Fig. 2. A detailed architecture of customized CNN for qualitative binary ADRD screening. It processes 224 × 224 pixel CDT images and features
three convolutional layers with increasing filters, batch normalization, max pooling, dense layers reducing from 64 to 16, and a dropout layer to
prevent overfitting. This architecture ensures efficient feature extraction and robust image classification.

86.28% of them are greater than 2. For positive samples, 83.76%
of them got CDT scores greater than or equal to 2. The mean
score of positive samples is nearly 1 point larger than that of
negative samples. For all samples, about 94.34% of them have
an image clarity score of 1, which means that the image is clearly
recognizable.

B. Experimental Setup

For the fully automatic scoring and screening scenario, three
single models (CNN, Multilayer Perceptron (MLP), and sup-
port vector machine(SVM)) were designed to facilitate both
qualitative and quantitative screening using only CDT images.
In contrast, the semi-automatic scenario focuses on qualitative
binary screening and incorporates heterogeneous inputs. Further
details on the model design can be found in Section III-D.

Fig. 2 illustrates the detailed architecture of our custom CNN
model, used for qualitative ADRD binary screening, forming
the foundation for the semi-automatic case and subsequent
processes of interpretability and validity verification.

This model is specifically tailored to process 224 × 224 pixel
color images, featuring an architecture that incorporates multi-
ple layers designed to efficiently capture and analyze features
for classification. It includes three convolutional layers, each
equipped with an increasing number of 3 × 3 filters (32, 64, and
128), essential for extracting a hierarchical spectrum of features
from simple edges to complex patterns [29]. Following each
convolutional layer, batch normalization is applied to enhance
training stability and efficiency [30]. Subsequently, each convo-
lutional layer is followed by a max pooling layer that reduces
the spatial dimensions of the feature maps by half, sequentially
decreasing from 224 × 224 to 112 × 112, 56 × 56, and finally
28 × 28. This reduction not only decreases the number of
parameters and computational complexity but also increases the
robustness of the feature representations against variations in
feature positioning within the input images [29]. After reducing
and extracting features, the model transforms the 3D feature

maps into a 1D vector. This vector then feeds into a sequence
of dense layers, which gradually decrease in size from 64 to 16,
and finally to a size that corresponds to the number of classes
(e.g., 2 for binary classification). These layers are crucial for
integrating the learned features to formulate a basis for the final
classification decision [29]. To prevent overfitting, a dropout
layer is included between the dense layers, which randomly
sets a fraction of the input units to zero during training [31].
This approach encourages the model to learn more robust and
generalizable features.

In this study, SVM and MLP models were selected for their
proven effectiveness in binary classification, image processing,
and multimodal data fusion. SVM excels in high-dimensional
spaces by efficiently creating optimal hyperplanes, which is cru-
cial for achieving clear class separation, especially in precision-
sensitive clinical settings [32], [33], [34]. Meanwhile, MLPs
are key in deep learning, adept at extracting complex pat-
terns through their hierarchical processing layers and learning
nonlinear feature interactions, making them ideal for intricate
image data analysis [35], [36], [37]. The effectiveness of both
SVM and MLP models was rigorously assessed using several
key performance metrics in our study. The results confirmed
their suitability for the task, with both models demonstrating
satisfactory outcomes, thereby validating their selection for this
research.

The decision to employ classification methods over regression
for evaluating CDT scores, which range quantitatively, is based
on several key considerations that enhance clinical relevance and
practical utility:

� Clinical Relevance: The CDT scores, though numerically
continuous, often represent distinct categories of cognitive
impairment levels — ranging from ‘not recognizable’ to
‘reasonably accurate’. Each score corresponds to a clin-
ically distinct stage of cognitive function, which aligns
more closely with categorical outcomes rather than a con-
tinuous spectrum. Thus, classification allows us to focus
on the differential diagnosis relevant to clinical settings.
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� Model Performance and Interpretability: In our study,
classification models have demonstrated robust perfor-
mance in distinguishing between these set categories ef-
fectively. Using classification accuracy and other discrete
metrics like precision and recall, we can provide clear and
interpretable results for clinical practitioners, which is cru-
cial for rapid decision-making in medical diagnostics [38].

� Alignment with Previous Studies: Many studies in the field
of cognitive assessment using CDT scores have success-
fully employed classification methods [6], [8], [9], [10],
providing a benchmark and validation for our method-
ological choices. This approach allows for consistency and
comparability across studies, enhancing the reliability of
findings across different research contexts.

� Simplicity and Accessibility: Classification models are
inherently simpler to implement and interpret com-
pared to regression models [39], [40]. In the context of
telemedicine applications, where our tool might be used
by practitioners with varied levels of technical expertise,
simplicity ensures broader accessibility and usability [38].

� Risk Stratification: Our classification method also allows
for explicit risk stratification, which is essential in clinical
settings. By categorizing patients into discrete risk groups
based on CDT scores, clinicians can prioritize interven-
tions more effectively.

C. Preprocessing and Feature Extraction

Digital CDT images undergo grayscale conversion and Gaus-
sian filtering to capture object gradients, enabling enhanced
feature extraction and effective noise reduction [41], [42]. Nor-
malization is applied in both CDT images and structured data,
so as to eliminate the influence of other transformation functions
on the image, that is, convert it into a unique standard form to
resist affine transformation [43], [44], and remove the unit or
magnitude limitation of the structured data to convert it into a
dimensionless pure value [45]. When using the gradient descent
method to train a neural network in this work, normalization can
speed up the solution speed of gradient descent, thereby speeding
up the convergence of the network [46]. The images used in the
actual experiment in this work are scanned, they have non-fixed
size and multiple blank invalid regions around the drawing clock.
To alleviate the varied quality and scale issue and enhance data
validity, a selective search algorithm is employed for image
cropping in CDT images. The resulting cropped images are
resized to a dimension of 224 pixels × 224 pixels to facilitate
subsequent processing.

Given the requirements for image feature representation de-
void of handcrafting or human intervention, the variability in
photo quality uploaded by users, and the limited color and texture
information inherent in CDT images, this paper employs the
Scale-Invariant Feature Transform (SIFT) [47] and Histogram of
Oriented Gradient (HOG) [48] methods to extract local features
from CDT images for representation purposes.

The SIFT descriptors can be obtained by building a gradient
orientation histogram for a small region around each key point,
and the key point can be obtained by computing the maxima or

minima in the stack of Difference of Gaussians (DoG) images.
The DoG image can be represented as

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ), (1)

where L(x, y, σ) means the convolution of the original image
I(x, y) with a Gaussian filter G(x, y, σ).

The core of HOG is to divide the entire image into multiple
small connected cells and calculate the gradient or edge direction
histogram of each cell. The combination of these histograms can
be used to form a feature descriptor.

D. Agile Multimodal Data Fusion Clusters

Multimodal data fusion encompasses the integration of two or
more data modalities to extract enhanced features by leveraging
the informational synergy among diverse data modalities. This
process is typically categorized into three stages: early fusion,
joint fusion, and late fusion, as delineated in existing litera-
ture [19], [20]. In this context, we propose the introduction of
four agile multimodal data fusion clusters utilizing CDT images
and structured data across all three fusion stages. This novel
approach aims to address the current research gap and contribute
to a more comprehensive understanding of multimodal data
fusion in the specific context of ADRD screening based on
CDT.

Early fusion is a process wherein features from multiple
modal data are integrated into a singular feature vector, serving
as the input for subsequent machine learning model training.
Within this study, two distinct methodologies are employed for
processing CDT images. The first approach involves utilizing
two classical image feature representation algorithms, SIFT
and HOG, to initially extract features from the images. These
features are then used as input for training an MLP model. The
second approach employs CNN to directly process CDT images,
bypassing a specific step for image feature extraction. Both
methods yield an intermediate output from CDT images, and the
loss associated with this output is propagated back to the training
model based on the images. The predicted quantitative CDT
and image scores serve as the final features for CDT images,
facilitating the fusion with structured features. Subsequently,
another MLP model takes this fused feature vector as input
for qualitative ADRD binary screening. Importantly, the loss of
the final output solely propagates back to the subsequent MLP
model, excluding the involvement of the preceding image-based
training models. This strategic approach ensures an effective
fusion of features and enhances the overall efficiency of the
ADRD screening process.

Joint fusion involves the transformation of data from diverse
modalities into feature representations, which are then intercon-
nected with the final output. Within the proposed framework,
CDT images and structured data serve as inputs for CNN and
MLP, respectively. The feature representations obtained from the
intermediate layers of these neural networks are fused through
a concatenation layer before the final dense layer. This result-
ing joint feature representation is then linked to the ultimate
qualitative binary output for ADRD screening. In joint fusion, a
pivotal distinction from the early fusion lies in the critical point
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that the loss incurred during the training of the final output is
propagated back to both the CNN and MLP models, facilitating
a collaborative, iterative process. This iterative joint propagation
ensures a more coherent integration of information from CDT
images and structured data, contributing to the refinement of the
joint feature representation and, subsequently, the accuracy of
ADRD screening.

Late fusion is characterized by a more straightforward con-
ceptualization in comparison to early and joint fusion, as it
involves the aggregation of data from distinct modalities at the
decision level. Specifically, this framework entails the training of
two classifiers–one for CDT images and another for structured
data–with qualitative binary variables as the target. The output
of each model is aggregated to form the final output. In the
context of ADRD screening, there is a deliberate emphasis on
identifying positive samples. Consequently, in this scenario, the
final outcome is considered positive as long as at least one
classifier produces a positive output. This strategic approach en-
sures a simplified yet effective late fusion model, facilitating the
integration of information from diverse modalities for improved
accuracy in ADRD screening.

E. Validity Analysis

Our research aims to use a unified framework to maximize
its applicability by discovering key features through validation,
showing the analysis process of structured features, and dissect-
ing the CNN model for interpretability and transparency.

We used gradient-weighted class activation mapping (Grad-
CAM) [17] in each convolutional layer of CNN to explore the
process of CDT image feature extraction. Locally linear embed-
ding (LLE) [18] is applied to the heatmap of each convolutional
layer and the original images to obtain the difference between
positive and negative samples at each key step of CNN and the
change of the entire learning process, thus showing the evolution
trend of CDT images.

LLE stands as a pivotal technique in manifold learning,
specifically designed to preserve the local linear characteristics
inherent in samples during the process of dimensionality reduc-
tion. Renowned for its efficacy in unraveling intricate structures
within high-dimensional datasets, LLE represents a non-linear
dimensionality reduction approach that finds widespread appli-
cation across diverse domains. Its unique capability to discern
complex patterns makes it particularly well-suited for tasks
wherein the preservation of local relationships within the data
is deemed paramount. LLE is often used to visualize high-
dimensional data in two or three dimensions. By preserving the
local structure, LLE can provide intuitive visualizations that help
in understanding the intrinsic geometry of the data. In pattern
recognition, LLE helps in identifying and classifying different
styles by effectively mapping the high-dimensional data of
image characters [49]. Therefore, LLE is employed here to
reveal and understand the complex, high-dimensional structures
in CDT images. Specifically, for each n-dimensional sample xi

in sample set D = {x1, x2, . . ., xm}, it can be represented by
a linear combination of its k nearest neighbors, then the loss

function is

J(w) =

m∑

i=1

∥∥∥∥∥∥
xi −

k∑

j=1

wijxj

∥∥∥∥∥∥

2

. (2)

The wij means the weight coefficient, and it can be obtained by
minimizing (2) with the constraint

k∑

j=1

wij = 1. (3)

Finally, each n-dimensional sample xi can be mapped into a d-
dimensional (d < n) sample yi by minimizing the loss function

J(y) =

m∑

i=1

∥∥∥∥∥∥
yi −

k∑

j=1

wijyj

∥∥∥∥∥∥

2

. (4)

In addition, the information gain ratio (IGR) is used to explain
the structured feature importance. Considering it is only applied
in categorical variables, then recursive feature elimination (RFE)
has been applied in all the structured features.

The reason for using IGR, a typical feature selection metric,
is to lessen the bias of information gain, which tends to favor
the features with more categories. IGR can be represented as

IGR(X, a) =
H(X)−H(X|a)
−∑n

i pilog(pi)
. (5)

where X is a random variable, H(X) is the entropy of X ,
H(X|a) is the entropy of X given the value of attribute a, pi is
the proportion of class i in the dataset, and n is the total number
of classes.

RFE is another feature selection technique, and the logistic
regression model is used here as the algorithmic model to operate
the RFE technique. The model will initially be trained on the full
feature set, and RFE will recursively remove the least important
features and fit the given algorithmic model on the pruned feature
set until a specified number of features or a desired level of
performance is achieved.

F. Performance Metrics

Four different metrics have been used to evaluate the model
performance to reduce measurement bias for the imbalanced
data as much as possible. For the qualitative binary screening,
the prediction can be divided into four situations:

� TP: True Positive, predict the positive class as the positive
class;

� FP: False Positive, predict the negative class as a positive
class;

� TN: True Negative, predict the negative class as a negative
class;

� FN: False Negative, predict the positive class as a negative
class.

Then

Recall =
TP

TP + FN
. (6)
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TABLE IV
FULLY AUTOMATIC ADRD SCREENING RESULTS

Precision =
TP

TP + FP
. (7)

F1− Score =
2× Precision × Recall

Precision + Recall
. (8)

The weighted average method is applied for multi-classification
scenarios.

Also, the Area Under the Curve (AUC) is used to measure the
entire two-dimensional area underneath the receiver operating
characteristic (ROC) curve from (0, 0) to (1, 1). It tells how much
the model is capable of distinguishing between classes, and the
higher, the better. Compared with accuracy, it is not sensitive to
whether data is balanced.

For the above four evaluation metrics, precision highlights
the accuracy of positive predictions, recall gives an insight into
how effectively the model identifies actual positives, and the
F1-score provides a balanced measure of both. The AUC-ROC
complements the precision, recall, and F1-score by providing
a threshold-independent measure of model performance. While
precision, recall, and F1-score give us threshold-dependent mea-
sures at specific operating points, the AUC-ROC provides a
global view of the model’s performance across all thresholds.
These metrics provide a more nuanced view of the model’s
performance, particularly in terms of its ability to correctly
identify positive samples.

IV. RESULTS AND ANALYSIS

A. Fully Automatic ADRD Screening

As Table IV shows, CNN and image feature extraction tech-
niques both could have considerable performance for qualitative
ADRD binary screening, and MLP (Neural Networks) can give
more accurate results than SVM (traditional method) when
modeling high-dimensional, heterogeneous, clinical data. From

TABLE V
SEMI-AUTOMATIC ADRD SCREENING RESULTS

TABLE VI
FEATURE IMPORTANCE BASED ON RFE

the quantitative perspective, the models (CNN, MLP and SVM)
usually got better performance on the image scores than CDT
scores because 94.34% samples have a score of 1 on image
clarity. In addition, feature extraction techniques could capture
effective features of CDT images for both quantitative and
qualitative screening of ADRD.

B. Semi-Automatic ADRD Screening

Table V shows the results in semi-automatic screening case.
The joint fusion method takes advantage of both CNN and
MLP to achieve an AUC of 90% on ADRD prediction, and
the other three metrics are improved to 83%, which means this
fusion model is more sensitive for screening ADRD. The voting
method, which is in the late fusion stage, cares more about
positive samples than overall performance, which introduces
more errors because it will include more false positives to cause
overfitting, so it performs worse than using only images. It
is worth noting that the incorporating method of early fusion
takes the predicted CDT and image scores rather than the true
values for dementia screening. And three image processing
techniques obtained similar performance, which is slightly better
than using only images. The results indicate that multimodal
data fusion models could achieve better prediction performance
compared to using only CDT images, and the predicted CDT and
image scores could, instead of true scores, be used for effective
qualitative binary ADRD screening.

C. Feature Importance Analysis

IGR was performed on categorical structured features, and
according to the results shown in Fig. 3, cognitive variables are
more important than demographic variables; the most important
two are the score of the immediate word recall test and the
delayed word recall test, respectively.

RFE then is applied to all the structured features, and the
results are shown in Table VI where a lower ranking value means
higher importance. It can be concluded that all the cognitive
features tend to be more important than gender and race, and the
interval age weight, and height (which have been normalized
during pre-processing) also seem to be important by using RFE.
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Fig. 3. Feature Importance based on IGR. IGR was performed on
categorical structured features, showing cognitive variables are more
important than demographic variables.

Although it’s not capable of getting detailed rankings among
the cognitive features, the RFE results are somewhat consistent
with the results of IGR.

The integration of these two methods yields the finding that
cognitive features, particularly those associated with memory
tests, hold significant importance in ADRD screening. On the
other hand, the significance of demographic features is relatively
lower, with age intervals demonstrating a noteworthy correla-
tion. This observation aligns with the established understanding
that the risk of ADRD typically escalates with advancing age.

D. Visualization of CNN

Given the CNN model has good performance in the fully au-
tomatic instance for both quantitative and qualitative screening,
it is worth investigating which pattern of the CDT images plays
a decisive role. Fig. 4 shows original images of several random
selected samples and their outputs from the first convolutional
layer to the last one, and the valuable information can be known
from the gradual changes of the heatmaps:

1) The first convolutional layer is a collection of various edge
detectors. At this stage, the activation function retains
almost all the information in the original image.

2) As layers go deeper, the information learned becomes
more abstract and harder to understand intuitively. The
deeper the layer, the less information there is about the
visual content of the image.

3) The highlighted parts focus on the clock hands in
heatmaps, including the center point of hands, the hands
themselves and the direction and position of the hands.
The minute hand seems to be more important than the hour
hand. Some numbers and contours of the clock were also

learned, although they were various among the images,
mostly concentrated in the second and fourth quadrants.

Fig. 4 may reveal that positive samples tend to exhibit stronger
commonalities compared to negative samples, potentially chal-
lenging the model’s sensitivity in identifying subtler cases.
However, this concern is effectively mitigated by our compre-
hensive approach to model design and implementation. Our
advanced data preprocessing and feature extraction techniques
are designed to enhance the model’s ability to discern and learn
from these variations. Our customized model employs robust
regularization strategies, including dropout layer and batch nor-
malization, to prevent overfitting and enhance generalization
to diverse negative samples. Additionally, we experiment with
various models in both fully and semi-automatic cases, and
data fusion techniques in the semi-automatic case to improve
predictive accuracy for clear ADRD cases, helping the model
to recognize patterns common in positive samples essential for
reliable screening.

In order to better explain the effectiveness of the CNN model
and gain deeper insights, the original images and the outputs of
the three convolutional layers are reduced to points in a standard
two-dimensional coordinate system by modified LLE to observe
the changing trend of the entire dataset. Fig. 5 shows the modified
LLE outputs of the whole dataset from the original images to the
last convolutional layer, each point represents an image, and the
red point indicates that the sample is positive, the green point
indicates that it is negative. Based on the LLE visualization, the
original images are disorganized after LLE, and the positive and
negative data are mixed together, which cannot be classified.
The first convolutional layer classified a small part of positive
samples and most of the negative samples, but there is still a
large number of samples on the left side of the vertex that are
mixed together. The second convolutional layer identifies more
positive samples, but a considerable number of samples still
cannot be classified. The last convolutional layer classified most
of the positive samples, and only a small part of the samples
on the left near the vertices are mixed with negative samples.
This progressive change trend shows the working process of the
CNN model, and to a certain extent unveils the mystery of the
black box caused by the complexity of the abstract inference of
CNN, which is important for improving the credibility of the
model and providing transparency of the prediction results. It
also further illustrates the effectiveness of this CNN model in
predicting ADRD.

To gain deeper insights into the relationship between the pre-
diction results and the extracted features by CNN, so as to further
improve the interpretability of the model, Fig. 6 demonstrates
the trend of the image features learned by the CNN model in
the last convolutional layer by showing some samples, we also
illustrate the class label of each sample. When it is assumed that
a clock consists of three elements: outline, scale, and pointer,
it would be very helpful for us to understand this trend more
clearly.

On the left side of the figure are a large number of positive
samples, from sample #1 to #5, it is known that the images of
these samples are usually chaotic and have too much invalid
information, and it seems that only some outline information
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Fig. 4. Grad-CAM Visualization of CNN. It shows original images of several random selected samples and their outputs from the first convolutional
layer to the last one, with the progression of layers, the acquired information becomes increasingly abstract. Heatmaps highlight significant features
related to clock hands, encompassing the center point of the hands, the hands themselves, and the direction and position of the hands.

Fig. 5. LLE Visualization of CNN. The modified LLE outputs visually represent the entire dataset’s transformation from original images to the
last convolutional layer. Positive samples are denoted by red points, while negative samples are indicated by green points. The LLE visualization
underscores the disorganization in the original images and illuminates the progressive changes achieved through each layer of the CNN model.

can be identified, but detailed features may not be obtained.
On the left side of the vertex, there is a mixture of positive
and negative samples. In this part, the outline of the clock is
relatively clear, some images have scale information (sample #6
to #10), and some have pointer information (sample #8, #10 and
#11), but the positive samples (sample #6, #7, and #11) usually
contain only two of the three messages. More importantly, in
this area, the images of positive and negative samples are very
confusing, for example, for samples #9, #10, #11, of which #9
and #10 are negative, but their images are relatively chaotic, the
indicated time also is wrong. On the contrary, the positive sample
#11 has a clear outline and pointer, and the time indication is
correct. It could be interpreted that the negative sample in this
area will have a great risk of developing ADRD. In the area
on the right side of the figure where the negative samples are
clustered, the images are very clear, the standard circular outline,
the position and orientation of the pointer, and the distribution
of the clock scale, and even the numbers on the scale all can be
recognized. That is to say, CNN has learned all three messages of

outline, scale, and pointer in this part, as well as a lot of detailed
information.

However, while the importance of outline, scale, and pointer
features for ADRD screening is evident, further subdividing the
dataset labels, such as missing only numbers or pointers, may
complicate training without necessarily improving performance
in this study. Such granularity could fragment the dataset, reduce
statistical power, and shift focus from general cognitive impair-
ment to specific drawing errors, misaligning with our goal of
early ADRD detection. The absence of specific ground truth
labels for these conditions could also undermine model training
and validation.

V. DISCUSSION, INSIGHTS AND FUTURE PLAN

A. Discussion and Insights

Effectiveness: Based on the experimental results of this work,
CDT has been shown to be an effective tool in fully and semi-
automatic early ADRD screening. Both CNN and traditional
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Fig. 6. Trend of the image features learned by CNN based on LLE. It elucidates the trend of image features learned by the CNN model in the
last convolutional layer, enhancing interpretability. Notably, on the left side, positive samples exhibit chaotic images with identifiable outlines but lack
detailed features. Towards the vertex, a mixture of positive and negative samples reveals varying clarity in clock elements and often lack one of the
three components (outline, scale, or pointer). Conversely, the right side, where negative samples cluster, showcases clear images with recognizable
outlines, scales, pointers, and detailed information.

image feature extraction techniques can capture key features
of CDT images for accurate screening in both quantitative and
qualitative terms. The neural network algorithm has been proved
to be more effective in early ADRD screening than the classical
SVM algorithm. The fusion of multimodal data, especially
the cognitive features related to memory, can further improve
performance.

In this study, we opted for a customized CNN model instead
of larger or more sophisticated models due to considerations of
dataset size, computational constraints, and the need for model
interpretability. Although our dataset is substantial, it may not
support the training of very deep networks without a significant

risk of overfitting [50]. Additionally, deeper networks require ex-
tensive computational resources [51], which can be a challenge
in telemedicine environments where such resources are often
limited. Therefore, a lighter, simpler model is preferred to ensure
effective deployment without high-end hardware, making the
solution more accessible for typical clinical settings. The simpler
architecture of our customized CNN also offers advantages in
terms of modifiability, tuning,and interpretability, which are
crucial in medical applications. The ability to easily understand
and adjust the model based on preliminary results or specific
clinical feedback ensures that our approach is not only effective
but also practical and adaptable for clinical use.
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Applicability: The proposed unified framework provides a
detailed process for fully and semi-automatic ADRD screening
process and also a comprehensive instance for multi-modal data
fusion. It considers the fusion strategies of each stage, only when
the loss of the final output is propagated back to the both models
during training, it can more effectively help the model to extract
features, thereby improving the performance.

In addition, the consideration of multi-modal data and
telehealth-based framework design has great potential for
ADRD screening by using other sensor data in the future. For
example, high-dimensional heterogeneity data about gait and
voice was obtained through the accelerometer and microphone
of the mobile phone. What’s more, users can receive simple
instructions locally, and perform repeatable tests without strict
environmental requirements. All calculations and data storage
will be performed in the cloud. The feedback can be in real-time,
and there is no requirement for their mobile device.

Transparency and Interpretability: Unlike most existing stud-
ies, which pre-set the errors or score items of CDT before
training the model, this framework aims to reduce the bias
introduced by human intervention as little as possible. The
feature importance analysis and visualization of the model make
it transparent and interpretable for understanding CDT-based
early ADRD screening models and the process of extracting
features, so as to obtain natural, rather than hand-crafted, key
features. Also, four different metrics were used to eliminate as
much as possible the bias introduced by unbalanced data and a
single metric.

Dataset Sufficiency Validation Efforts: Our methodologies
mitigate the limitations of relatively small and unbalanced
dataset through several techniques that enhance the training
process and model robustness. We employ models and archi-
tectures optimized for smaller datasets, incorporating regular-
ization techniques such as dropout and batch normalization to
prevent overfitting and ensure generalization to new data [30],
[31]. The successful performance of these models is demon-
strated through robust external validation and metrics such as
AUC, precision-recall, and F1-scores, affirming the adequacy
of the dataset size and the strategies’ effectiveness in addressing
data imbalances [52], [53].

Additionally, advanced visualization and interpretation tech-
niques like Grad-CAM and LLE confirm that the dataset pro-
vides sufficient statistical power to identify meaningful differ-
ences and performances. In domain-specific applications like
ADRD screening using the CDT, the domain knowledge and
expert annotations, such as the CDT images and the cognitive
assessment data in this study, inherent in the dataset’s creation
and the detailed annotations add depth [54], compensating for
the dataset size and imbalances.

To further mitigate the dataset imbalances, we down-sampled
the predominantly negative raw dataset to achieve a 1:5 ratio of
positive to negative samples. We didn’t adjust the dataset to a
1:1 ratio for several reasons:

First, the existing distribution of samples, although uneven,
better reflects the real-world prevalence of ADRD within the
general population to some extent [55]. By maintaining this
distribution, we enhance the external validity and applicability

of our models to actual clinical environments. Adjusting the
ratio to 1:1 could introduce an artificial bias that might skew the
model’s performance metrics away from realistic conditions.

Second, we have implemented class weights during model
training to address the imbalance issue effectively [56], [57].
And we assessed our models using metrics sensitive to data
imbalances [52], [53]. By training our models on this unbalanced
data, we aim to achieve a balanced sensitivity and specificity
in detection. This is critical in clinical settings to avoid the
significant consequences associated with both over-diagnosis
and under-diagnosis. Our approach ensures that the models are
sensitive to the less frequent positive cases while remaining
accurate in identifying the more common negative cases.

However, there are two main limitations of this study:
� Unbalanced and insufficient data: The dataset’s size of

1662 samples, while manageable, is smaller than ideal
for neural network training. Despite our above efforts to
mitigate class imbalance, we also adjust class weights
during training, the existing 1:5 ratio of positive to negative
samples poses ongoing concerns. This disparity could be
even more problematic in real-world applications, where
the ratio of positive to negative subjects could widen to
1:50, potentially impacting the model’s generalizability
and effectiveness in broader clinical settings.

� Data quality: The quality disparities between CDT images
for binary classification pose a significant challenge. Neg-
ative samples often exhibit distorted lines, complicating
accurate identification. This discrepancy arises from the
NHATS survey data source, where subjects, despite report-
ing no dementia, may be at potential risk for ADRD or in
early stages of mild cognitive impairment unbeknownst
to them. Additionally, the presence of other diseases
like Parkinson’s Disease (PD) and stroke may influence
CDT performance. Consequently, the CNN model, rely-
ing solely on raw clock drawing images, may encounter
limitations in discerning distinctive features for effective
screening.

B. Future Plan

Based on the above discussion and insights, our focus shifts
towards pragmatic considerations, outlining actionable strate-
gies and concrete plans for future developments for this study.

In future studies, a significant avenue for exploration lies
in the development and utilization of customized models tai-
lored specifically to the unique challenges and nuances of the
ADRD-related research domain. Customized models offer the
potential for greater accuracy and efficiency by incorporating
ADRD domain-specific knowledge and data characteristics di-
rectly into their architecture. This approach can lead to models
that are more attuned to the subtle patterns and intricacies
inherent in data of subjects who have a high risk of ADRD,
potentially uncovering insights that more generic models might
miss.

Another promising area for future research is the application
of advanced techniques for model fusion, which can combine
insights from multiple models or data sources and is crucial
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in scenarios where no single model provides a complete pic-
ture. Advanced fusion techniques, such as self-attention mech-
anisms [58] or neural network ensemble methods [59], can
provide more nuanced and effective ways of integrating diverse
sources of information.

As this benchmark study has concluded that cognitive fea-
tures, especially those related to the memory test, play a more
important role in ADRD screening than demographic features.
Future research endeavors in the realm of ADRD screening
have a significant opportunity to focus on the detailed analysis
of cognitive information. Cognitive symptoms are among the
earliest signs of ADRD, and a more nuanced understanding
of these changes can lead to earlier and more accurate screen-
ing [60]. Then, a compelling area warranting further exploration
involves the longitudinal analysis of cognitive data [61], [62].
NHATS actually provides us with this potential opportunity. It
follows the same individuals over time, allowing researchers
to observe changes and trends in health and functioning as
people age. This design is crucial for studying the dynamics
of aging, including the progression of chronic diseases, such
as ADRD. Tracking cognitive function over time in individuals
can provide valuable insights into the progression and potential
early signs of cognitive decline. This approach can help in
distinguishing between normal aging-related changes and those
indicative of ADRD. Advanced statistical methods and machine
learning models can be employed to analyze this longitudi-
nal data, identifying trends and changes that are predictive of
ADRD.

We acknowledge that class imbalance is an ongoing challenge
in this field, and we aim to explore further methodologies in
our future work to continue improving the robustness and re-
producibility of our findings. One of the potential improvement
methodologies will be exploring and refining advanced sampling
methods. We intend to explore variations of the Synthetic Minor-
ity Oversampling Technique (SMOTE) [63], which generates
synthetic samples in the feature space. This can be further
enhanced by integrating SMOTE with the undersampling of
the majority class to create a more balanced dataset without
significant information loss. Another possible way is exploring
advanced boosting techniques like AdaBoost [64], [65] and
Gradient Boosting [65] with modifications for imbalance. These
methods focus more on the misclassified examples and can be
adapted to give more weight to the minority class.

VI. CONCLUSION

A mobile framework focusing on multimodal data fusion
and model interpretation for fully and semi-automatic ADRD
screening has been established in this study. It can take high-
dimensional multi-modal data as inputs and reveal the key
features of CDT images learned by the CNN model and its
evolution to eliminate the manual intervention during model
training.

The framework proves that traditional image feature tech-
niques (SIFT and HOG) and neural networks are both effective
for CDT-based ADRD screening. MLP performs much better
than SVM when processing the extracted high-dimensional

image features. The multi-modal data fusion technique could
increase the prediction performance, and the additional cogni-
tive variables, especially the memory test features, are more
important than demographic variables. Also, the predicted CDT
and image scores have great potential to substitute true values
for binary qualitative ADRD screening.

The visualization and interpretation of the CNN model show
that outline, scale, and clock hands are three key points for
ADRD screening. The center point of hands, the hands them-
selves, and the direction and position of the hands, especially
the minute hand, seem to play an essential role in screening.
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